Mathematics Practice Tests (SS1 – SS3) – Calculus (Differentiation and Integration)

Hello and Welcome to Mathematics Practice Tests (SS1 - SS3) - Calculus (Differentiation and Integration)

1. You are to attempt 10 random objectives questions ONLY for  10 minutes.
2. Supply Your Full Name and Location in the text box below and begin immediately.
3. You can attempt as many times as possible
Full Name (Surname First):
Location (City/State):

Find the maximum value of y in the equation y = 1 - 2x - 3x2

A. $\frac{5}{4}$      B. $\frac{5}{3}$      C. $\frac{3}{4}$      D. $\frac{4}{3}$

Evaluate $\int_{0}^{1}&space;(3&space;-&space;2x)&space;dx$

A. 3     B.5     C. 2     D. 6

lf  $\frac{dy}{dx}$  = 2x - 3 and y = 3 when x = 0, find y in terms of x.

A. 2x2 - 3x      B. x2 - 3x      C. x2 - 3x - 3       D. x2 - 3x + 3

Evaluate $\int_{\frac{\pi&space;}{2}}^{0}sin\:&space;2xdx$

A. 1    B. 0     C. $-\frac{1}{2}$    D. –1

Differentiate (cos θ — sin θ)2 with respect to θ

A. -2 cos 2θ    B. -2 sin 2θ     C. 1 - 2 cos 2θ    D. 1 - 2 sin 2θ

If y = x cos x, find  $\frac{dy}{dx}$

A. sin x - x cos x     B. sin x + x cos x     C. cos x + x sin x     D. cos x - x sin x

Given y = x3 − x2 − 4,  find  $\frac{dy}{dx}$  at  x  =  4

A. 38    B. 39    C. 40   D. 41

Given y = x3 − x2 − 4, find  $\frac{dy}{dx}$  at  x =  0

A. 0     B. 1    C. 2    D. 3

The distance travelled by a particle from a fixed point is given as s = (t3 - t2 - t + 5) cm. Find the minimum distance that the particle can cover from the fixed point.

A. 2.3 cm    B. 4.0 cm    C. 5.2 cm    D. 6.0 cm

Find the minimum value of y = x2 + 6x - 12

A. -21     B. -12     C. -6     D. -3

GREAT! You finished before the expiration of the 10 minutes allotted to you. You may want to preview before submission, else, Click the submit button below to see your score

To submit your quiz and see your score/performance report; Make sure you supply your Full Name in the form above.

Unable to submit your quiz? . Make sure you supply your Full Name before submission.